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1 Introduction and discussion

Recent developments in computing finite size effects on the asymptotic spectrum of N =

4 SYM twist-two operators are very promising in order to ultimately find the complete

spectral equations of the dilatation generator.

The revealing of integrable structures on both sides of the AdS/CFT correspondence [1]

gradually led to powerful tools for computing anomalous dimension of gauge invariant oper-

ators by means of the Bethe Ansatz [2]. The factorized two-body S-Matrix [3] that governs

scattering processes of the spin chain particles and excitations of the AdS5 × S5 string

worldsheet is determined by the psu(2, 2|4) symmetry of N = 4 up to a phase factor [4]. In

order to also determine this algebraic ambiguity a crossing-like equation for the dressing

phase has been derived [5]. It allows for multiple solutions [6], one of which gets singled

out [7] by reconciliation with an explicit diagrammatic calculation of the four-loop anoma-

lous dimensions of twist-two operators in the large spin limit [8]. It still remains an open

problem to explicitly show the crossing invariance of the dressed asymptotic Bethe equa-

tions. For this purpose the representations of the dressing factor in [9] might prove useful.

It was shown that these equations are asymptotic in nature, and need to be corrected

by wrapping effects [10]. An explicit calculation of the anomalous dimension of twist-two

operators from the asymptotic Bethe Ansatz at four-loops unequivocally showed that the

pole prescript by BFKL physics can not be fulfilled [11]. The Bethe Ansatz therefore does

not produce the correct result at and beyond wrapping order.
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However, for exactly these operators complete results have been obtained for the first

time. For the simplest representative of twist-two operators, the Konishi-field, a field

theoretical calculation starting from the asymptotic dilatation generator [12], finite-size

corrections to the Bethe Ansatz using Lüscher formulas [13], and finally a full-fledged

Feynman calculus [14] identically determined the complete anomalous dimension.

The successful application of the Lüscher formalism relies on a generalization of the

Lüscher formulas [15] to both non-relativistic models as well as multi-particle states, which

had been conjectured in [13, 16]. With this formalism applied to the 2d worldsheet QFT

of the AdS5 × S5 superstring it has been possible to compute the four-loop anomalous

dimension of twist-two operators at general values of the spin [17]. The result passed

several non-trivial tests from BFKL and reciprocity constraints [17, 18]. The leading

transcendental part had been confirmed in an impressive field theory computation [19].

For the complete spectral equations of N = 4 SYM, however, thermodynamic Bethe

Ansatz methods ought to be applied, as has been initiated for string and gauge theory

in [20, 21]. A Y-system, which is believed to yield anomalous dimensions of arbitrary local

operators of planar N = 4 SYM has been recently conjectured in [22].

The aim of this work is to continue the application of the Bethe Ansatz and the

Lüscher formalism to the next operators in reach, namely twist-three operators. The

leading wrapping contribution to the anomalous dimension of twist-three operators will

appear at five-loops. In order to compute the complete five-loop anomalous dimension

of the ground state we start from an ansatz based on the maximum transcendentality

principle [23] for both the asymptotic and wrapping contributions. The asymptotic part

can be determined from the Bethe equations after the initial ansatz has been upgraded with

further constraints from reciprocity. To compute the wrapping contribution, we apply the

generalized Lüscher formulas [17] to operators of twist-three.

Our result passes some important consistency tests. Its leading asymptotic behavior

for large values of the spin reproduces the universal scaling function at five-loop order.

The first subleading correction coincides with the results of [24, 25]. Contributions from

finite-size effects start at order (log2 M/M2), as in the case of twist-two operators [18]. In

contrast to the latter, there is no BFKL equation for twist-three operators, and therefore

no prediction for the pole structure of our result. However, we analyze the behavior of

the anomalous dimension at the singular value of spin M = −2. Interestingly, the pole

structure agrees with the conjectured resummation formula of [11], once contributions from

wrapping effects are taken into account. Additionally, the wrapping correction obtained

from the Lüscher formula precicesly matches with the computation from the Y -system1 [22].

The complete result, including the wrapping contribution, is reciprocity respecting.

The main body of the paper follows to the above outlined procedure. Some basic

definitions of harmonic sums are recalled in appendix A. Appendix B contains the analysis

of the asymptotic structure of the anomalous dimensions and their corresponding P -kernels

up to five loops. Speculations related to a pattern in the asymptotic structure of anomalous

dimensions of twist operators are also given in appendix B.

1We thank Pedro Vieira for his support in the numerical cross-check.
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2 Asymptotic Bethe equations

We will start our analysis with the contribution to the final result stemming from the

asymptotic Bethe Ansatz equations. Twist-three operators are embedded in the sl(2) sub-

sector of N = 4 SYM. They can be represented by an insertion of M covariant derivatives

D into the protected half-BPS state TrZ3

Tr (Ds1Z Ds2 Z Ds3Z) + · · · , with M = s1 + s2 + s3 . (2.1)

Their anomalous dimensions can be obtained from a non-compact, length-three sl(2) spin

chain with M excitations underlying a factorized two-body scattering [3]. However, the

interaction range between scattering particles increases with orders of the coupling constant

in perturbation theory. If it exceeds the length of the spin chain and wraps around it, the S-

matrix picture [3, 4] loses its meaning, as no asymptotic region can be defined any longer.

For twist L operators this effect, delayed by superconformal invariance, starts at order

g2L+4. Nevertheless, the Bethe Ansatz does not cease to work but gives an incomplete

result, which does not incorporate these corrections [11].

It was shown that the Bethe Ansatz result for twist-two operators can be completed

by considering additional scattering effects with virtual particles [17]. It passes non-trivial

tests with BFKL [17], as well as reciprocity [18] constraints and reproduces the correct

scaling behavior at large values of the spin M [7, 18], proposing a certain confidence. We

compute these wrapping effects for twist L = 3 in section 5.

The Bethe Ansatz equations for the operators (2.1) with our choice of the coupling

constant g2 =
g2
YMN

16 π2 are given by

(

x+
k

x−
k

)3

=
M
∏

j=1
j 6=k

x−
k − x+

j

x+
k − x−

j

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

exp(2iθ(uk, uj)) ,
M
∏

k=1

x+
k

x−
k

= 1 . (2.2)

The spectral parameters x± are defined in terms of the rapidities u by [26]

x±(u) = x(u ± i/2) , x(u) =
u

2

(

1 +
√

1 − 4g2/u2
)

. (2.3)

The phase shift θ(uk, uj) acquired by two particles with rapidities uk, uj passing each other

is given to five-loop order by the expansion [7]

θ(uk, uj) =
(

4ζ3g
6 − 40ζ5g

8
)

(q2(uk)q3(uj) − q3(uk)q2(uj)) + O(g10) , (2.4)

where the qr(u) correspond to the conserved magnon charges [26]

qr(u) =
i

r − 1

(

1

(x+(u))r−1
−

1

(x−(u))r−1

)

. (2.5)

From the solution to (2.2) given in terms of the Bethe roots x±
k one computes the anomalous

dimension by

γABA(g) = 2g2
M
∑

k=1

q2(uk) . (2.6)
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Due to the length L = 3 of the operators (2.1), wrapping effects are expected to contribute

at order g10, such that the anomalous dimension is written perturbatively as

γ(M) = g2 γ2(M) + g4 γ4(M) + g6 γ6(M) + g8 γ8(M) (2.7)

+g10 (γABA

10 (M) + γwrapping

10 (M)) + · · · ,

where we tacitly assumed that to order g8 the complete result is identical to γABA and

therefore dropped its index.

At one-loop the Bethe roots uk are given by zeros of the Wilson polynomial [11]

PM (u) = 4F3

(

−M
2 , M

2 + 1, 1
2 + iu, 1

2 − iu

1, 1, 1

∣

∣

∣

∣

∣

1

)

. (2.8)

Closed expressions for the corrections to the Bethe roots to three-loop order have also been

obtained in [27] from the Baxter approach [28]. However, it is currently unclear if the

asymptotic Baxter equation [28] reproduces the same result as the Bethe Ansatz at and

beyond wrapping order.

In order to obtain closed expressions for the anomalous dimension we will therefore

solve (2.2) perturbatively for fixed values of the spin M and match the coefficients in an

appropriate ansatz which assumes the maximum transcendentality principle [23]. Up to

four loops, these expressions have been derived in [11] and [29]. They are given by

γ2 = 8 S1 (2.9)

γ4 = −16 S1 S2 − 8 S3 (2.10)

γ6 = 32 S1 S2
2 + 48 S3 S2 + 16 S1 S4 + 40 S5 − 32 S2,3 + 64 S1 S3,1 + 32 S4,1 − 64 S3,1,1(2.11)

γ8 = 8 S7 + 112 S1,6 + 240 S2,5 − 80 S3,4 − 464 S4,3 − 336 S5,2 − 80 S6,1 − 640 S1,1,5 (2.12)

−512 S1,2,4 + 384 S1,3,3 + 512 S1,4,2 − 512 S2,1,4 + 320 S2,2,3 + 640 S2,3,2 + 64 S2,4,1

+384 S3,1,3 + 704 S3,2,2 + 384 S3,3,1 + 576 S4,1,2 + 576 S4,2,1 + 384 S5,1,1 + 1280 S1,1,1,4

−256 S1,1,3,2 + 512 S1,1,4,1 − 384 S1,2,2,2 + 256 S1,2,3,1 − 384 S1,3,1,2 − 384 S1,3,2,1

−384 S1,4,1,1 − 384 S2,1,2,2 + 256 S2,1,3,1 − 384 S2,2,1,2 − 384 S2,2,2,1 − 384 S2,3,1,1

−384 S3,1,1,2 − 384 S3,1,2,1 − 384 S3,2,1,1 − 384 S4,1,1,1 − 1024 S1,1,1,3,1 − 128 S1 S3 ζ3 .

All sums are evaluated at argument M/2 and only positive indices appear. At four loop-

order, the dressing phase of the Bethe equations starts to contribute to (2.12) with a term

proportional to ζ3.

To determine the five-loop result in the same fashion implies a tremendous computa-

tional effort in view of the necessary precision.2 We have obtained rational values for the

anomalous dimension up to M ≈ 200, which is however too far from the requirement to fit

the coefficients of the corresponding ansatz vector of constant degree of transcendentality.

In order to find a closed form for γABA

10 in terms of nested harmonic sums further constraints

to reduce the number of coefficients are needed.
2See [30] for the five-loop anomalous dimension of a different class of operators (the field strength

operators TrFL), determined as a closed function of their length L.
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3 Parity invariance of γ(M)

The multi-loop anomalous dimension γ(M) is conjectured to obey a powerful constraint

known as generalized Gribov-Lipatov reciprocity. This constraint, arising in the QCD

context, has been presented in [31, 32] as a special (space-time symmetric) reformulation

of the parton distribution functions evolution equation, and approached in [33] from the

point of view of the large M expansion. In particular, in [33] such analysis has been

generalised to anomalous dimensions of operators of arbitrary twist L, and reciprocity has

been dubbed parity invariance in the sense clarified below. Reciprocity has been checked

in various multi-loop calculations of weakly coupled N = 4 gauge theory [18, 29, 34–37].

The reciprocity or parity invariance condition is easily expressed in terms of the P -

function (kernel), depending on the Lorentz spin M , which is in one-to-one correspondence,

at least perturbatively, with the anomalous dimension γ(M) as follows from [31–33]

γ(M) = P
(

M + 1
2γ(M)

)

. (3.1)

The parity invariance condition is a constraint that arises in the large M expansion of

P (M), which is expected to take the following form

P (M) =
∑

ℓ≥0

aℓ(log J2)

J2 ℓ
, J2 =

M

2

(

M

2
+ 1

)

, (3.2)

where the aℓ are coupling-dependent polynomials. Eq. (3.2) implies an infinite set of con-

straints on the coefficients of the large M expansion of P (M) organized in a standard 1/M

power series. The name parity-invariance is related to the absence of terms of the form

1/J2n+1, odd under J → −J .

In the following we will use the constraint eq. (3.2) as a guiding principle in order to

obtain the five-loop expression γABA
10 . To this aim, we need to express it as a more practical

test such that it can be applied to any proposed combination of harmonic sums. This task

can be performed with a basic result of [18], which we recall in following.

3.1 Harmonic combinations with definite parity

The notation for complementary harmonic sums Sa is recalled in appendix A. Let us

introduce the map ωa, a ∈ N, which acts linearly on linear combinations of harmonic sums

ωa(Sb,c) = Sa,b,c −
1

2
Sa+b,c. (3.3)

We also introduce a complementary map ωa, acting in a similar way on complementary

sums

ωa(Sb,c) = Sa,b,c −
1

2
Sa+b,c. (3.4)

Finally, let us introduce the combinations Ω

Ωa = Sa, (3.5)

Ωa,b = ωa (Ωb), (3.6)
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and the analogous complementary combinations Ωa. It is of course possible to change the

basis from Sa to Ωa. For example, up to a degree of transcendentality three, we have

Ω1 = S1 , Ω2 = S2 , Ω1,1 = S1,1 −
S2

2
, Ω3 = S3 , Ω2,1 = S2,1 −

S3

2
,

Ω1,2 = −
1

6
π2S1 −

S3

2
+ S1,2 , Ω1,1,1 =

S3

4
−

S1,2

2
−

S2,1

2
+ S1,1,1 , (3.7)

which can be inverted in order to obtain

S2 = Ω2 , S1,1 =
Ω2

2
+ Ω1,1 , S3 = Ω3 , S2,1 =

Ω3

2
+ Ω2,1,

S1,2 =
π2Ω1

6
+

Ω3

2
+ Ω1,2 , S1,1,1 =

π2 Ω1

12
+

Ω3

4
+

Ω1,2

2
+

Ω2,1

2
+ Ω1,1,1. (3.8)

The crucial result is then given by the following theorem [18].

Theorem 1 (a) The combination Ωa1,...,ad
with positive {ai} is parity-even iff

(−1)a1+···+ad = (−1)d. (3.9)

(b) If this condition is not satisfied, the expansion of Ωa1,...,ad
is parity-odd, with the

(trivial) exception of the leading constant term.

(c) The combination Ωa1,...,ad
with positive odd {ai} is parity-even.

From this theorem we deduce the following

Theorem 2 (parity-invariance test) A specific linear combination of harmonic sums

is parity invariant iff it does not contain parity-odd terms when transformed from the Sa

basis to the Ωa basis.

To see how this test can be used let us consider an illustrative example, the two-loop

anomalous dimension. One starts with the following ansatz of transcendentality three

γ4 = a1S3 + a2 S1,2 + a3 S2,1 + a4 S1,1,1 , (3.10)

with all sums evaluated at M/2. The corresponding P4-kernel, derived by inverting for-

mula (3.1) and replacing the perturbative expansion (2.7), reads in a canonical basis

P4 = γ4 −
1

4
γ2γ

′
2 ≡ (a1 − 16)S3 + (a2 + 16)S1,2 + (a3 + 16)S2,1 − 16 ζ2 S1 + a4S1,1,1 , (3.11)

where we used the one-loop result (2.9). Writing (3.11) in terms of the Ω basis one finds

P4 = c1 Ω1 + c3 Ω3 + c1,2 Ω1,2 + c2,1 Ω2,1 + c1,1,1 Ω1,1,1 + const , (3.12)

where the ci are linear combinations of the coefficients ai. The combinations Ω1, Ω3, Ω1,1,1

are all reciprocity respecting, according to the above theorem. Imposing reciprocity on P4

implies the vanishing of the coefficients of those Ω with wrong parity, namely

c1,2 = a2 + 16 +
a4

2
= 0, c2,1 = a3 + 16 +

a4

2
= 0 . (3.13)
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This leads to the conditions a3 = a2 and a4 = −2(16 + a2), that are indeed satisfied by the

expression in (2.10). Thus, reciprocity has determined 2 of the 4 unknown coefficients in

the initial ansatz for the anomalous dimension.3

4 Determination of γABA

10

The strategy to derive the asymptotic part of the anomalous dimension at n = 5 loops

incorporates a combined use of the maximum transcendentality principle, reciprocity and

Bethe equations.

The starting point is to write γABA
10 as a linear combination of harmonic sums of tran-

scendentality τ = 2n − 1 = 9. For a given τ , basic combinatorics leads to the fact that

there are 2τ−1 linearly independent harmonic sums with positive indices. This means that

there are in principle 256 terms which potentially contribute to the anomalous dimension.

From the numerical solution of the asymptotic Bethe equations it is possible to obtain

a long list of rational values for γABA
10 (M) for fixed values of M . The list-length is smaller

than 256 due to rather hard computational limitations. However, these limitations can be

overcome by means of parity-invariance.

To constrain the 256 unknown coefficients via reciprocity one has to impose parity

in the sense of eq. (3.2) on the five-loop contribution P10 to the kernel P defined in

eq. (3.1). This contribution can be derived from the anomalous dimension by simply

inverting eq. (3.1) and taking into account the perturbative expansion eq. (2.7). Finally,

we apply the previous parity-invariance test and obtain a large set of linear constraints

on the unknown coefficients. The total number of constraints from Bethe equations and

parity-invariance is now larger than 256 and we find an over-determined set of linear equa-

tions, which is solvable. The final result is given in table 1, in which terms multiplied by ζ3

and ζ5 are directly induced from the dressing factor. As is the case for lower-loop orders,

only positive indices appear in the participating harmonic sums. The result that we have

obtained by the above stated methods can be checked as follows:

1. Scaling function (cusp anomaly). A consistency check of the formula presented in

table 1 is given by its leading asymptotic behavior, namely

γABA

10 (M) ∼ 32

(

887

14175
π8 +

4

3
π2 ζ2

3 + 40 ζ3 ζ5

)

log M, for M → ∞ . (4.1)

It coincides with the five-loop contribution in the weak coupling perturbative expan-

sion of the integral equation obtained in [7], which is believed to describe the universal

scaling function. Put differently, we confirm its universality [38, 39] for twist-three

at five loops.

2. Virtual scaling function. A further confirmation can be found from the evaluation

of the first finite-order correction to the asymptotic behavior (4.1). In general this

quantity is twist-dependent and thus non-universal [40]. However, it has been shown

3The coefficient a4 has only been kept to show the exact number of constraints coming from reciprocity.

It could have been set to zero from the beginning because at large M the term S1,1,1 ∼ log3 M is not

compatible with the universal leading logarithmic behavior (cusp anomaly).
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γABA

10
=136S9+368S1,8+2832S2,7+4272S3,6+848S4,5−3024S5,4−2736S6,3−1168S7,2

−496S8,1 − 5376S1,1,7 − 12352S1,2,6 − 8832S1,3,5 + 1600S1,4,4 + 3968S1,5,3 − 64S1,6,2

−1344S1,7,1 − 12352S2,1,6 − 13760S2,2,5 − 2112S2,3,4 + 4288S2,4,3 − 960S2,5,2 − 5440S2,6,1

−9088S3,1,5 − 2432S3,2,4 + 5120S3,3,3 + 2688S3,4,2 − 4160S3,5,1 + 1280S4,1,4 + 5824S4,2,3

+6400S4,3,2 + 2112S4,4,1 + 5120S5,1,3 + 6208S5,2,2 + 5312S5,3,1 + 3904S6,1,2 + 3904S6,2,1

+1728S7,1,1 + 21504S1,1,1,6 + 22784S1,1,2,5 + 5632S1,1,3,4 − 1280S1,1,4,3 + 6912S1,1,5,2

+11520S1,1,6,1 + 22784S1,2,1,5 + 9088S1,2,2,4 − 1024S1,2,3,3 + 6784S1,2,4,2 + 17152S1,2,5,1

+5504S1,3,1,4 − 3456S1,3,2,3 − 1536S1,3,3,2 + 7680S1,3,4,1 − 4480S1,4,1,3 − 6272S1,4,2,2

−3584S1,4,3,1 − 3840S1,5,1,2 − 3840S1,5,2,1 + 768S1,6,1,1 + 22784S2,1,1,5 + 9088S2,1,2,4

−1024S2,1,3,3 + 6784S2,1,4,2 + 17152S2,1,5,1 + 9088S2,2,1,4 − 2688 S2,2,2,3 + 640 S2,2,3,2

+13440S2,2,4,1 − 3456S2,3,1,3 − 7040S2,3,2,2 − 768S2,3,3,1 − 4480S2,4,1,2 − 4480S2,4,2,1

+2816S2,5,1,1 + 6272S3,1,1,4 − 2944S3,1,2,3 − 1536S3,1,3,2 + 7936S3,1,4,1 − 2944S3,2,1,3

−7296S3,2,2,2 − 768S3,2,3,1 − 6656S3,3,1,2 − 6656S3,3,2,1 − 1024S3,4,1,1 − 3968S4,1,1,3

−6528S4,1,2,2 − 3584S4,1,3,1 − 6528S4,2,1,2 − 6528S4,2,2,1 − 4864S4,3,1,1 − 5376S5,1,1,2

−5376S5,1,2,1−5376S5,2,1,1−4608S6,1,1,1−32768S1,1,1,1,5−10240S1,1,1,2,4−3072S1,1,1,3,3

−17920S1,1,1,4,2 − 30720S1,1,1,5,1 − 10240S1,1,2,1,4 − 8704S1,1,2,3,2 − 24064S1,1,2,4,1

+1024S1,1,3,1,3+2560S1,1,3,2,2−4096S1,1,3,3,1−512S1,1,4,1,2−512S1,1,4,2,1−10240S1,1,5,1,1

−10240S1,2,1,1,4 − 8704S1,2,1,3,2 − 24064S1,2,1,4,1 + 3072S1,2,2,2,2 − 6656S1,2,2,3,1

+512S1,2,3,1,2+512S1,2,3,2,1−10752S1,2,4,1,1+1024S1,3,1,1,3+3072S1,3,1,2,2−3584S1,3,1,3,1

+3072S1,3,2,1,2+3072S1,3,2,2,1−2560S1,3,3,1,1+3072S1,4,1,1,2+3072S1,4,1,2,1+3072S1,4,2,1,1

+3072S1,5,1,1,1 − 10240S2,1,1,1,4 − 8704S2,1,1,3,2 − 24064S2,1,1,4,1 + 3072S2,1,2,2,2

−6656S2,1,2,3,1+512S2,1,3,1,2+512S2,1,3,2,1−10752S2,1,4,1,1+3072S2,2,1,2,2−6656S2,2,1,3,1

+3072S2,2,2,1,2+3072S2,2,2,2,1−5632S2,2,3,1,1+3072S2,3,1,1,2+3072S2,3,1,2,1+3072S2,3,2,1,1

+3072S2,4,1,1,1+3072S3,1,1,2,2−4096S3,1,1,3,1+3072S3,1,2,1,2+3072S3,1,2,2,1−2560S3,1,3,1,1

+3072S3,2,1,1,2+3072S3,2,1,2,1+3072S3,2,2,1,1+4608S3,3,1,1,1+3072S4,1,1,1,2+3072S4,1,1,2,1

+3072S4,1,2,1,1 + 3072S4,2,1,1,1 + 3072S5,1,1,1,1 + 16384S1,1,1,1,3,2 + 32768S1,1,1,1,4,1

+8192S1,1,1,2,3,1 + 4096S1,1,1,3,1,2 + 4096S1,1,1,3,2,1 + 20480S1,1,1,4,1,1 + 8192 S1,1,2,1,3,1

+12288S1,1,2,3,1,1 + 8192S1,2,1,1,3,1 + 12288S1,2,1,3,1,1 + 8192S2,1,1,1,3,1 + 12288S2,1,1,3,1,1

−16384S1,1,1,1,3,1,1 + ζ3 (896S6 − 2304S1,5 − 1792S2,4 − 768S3,3 − 1792S4,2 − 2304S5,1

+2560S1,1,4 + 512S1,2,3 + 1536S1,3,2 + 3584S1,4,1 + 512S2,1,3 + 1536S2,3,1 + 512S3,1,2

+512S3,2,1 + 2560S4,1,1 − 2048S1,1,3,1 − 2048S1,3,1,1) + 1280 ζ5 (S1,3 + S3,1 − S4)

Table 1. The result for the five-loop asymptotic dimension γABA

10

(

M

2

)

, written in the canonical basis.

that this dependence is only linear and an all-loop integral equation can be writ-

ten [24] (see also [25, 41]). The large M expansion of table 1 leads to the O(1/M0)

value

B
(5)
3 =

2048

945
π6ζ3 + 64ζ3

3 +
8

45
π4ζ5 −

440

3
π2ζ7 − 7448ζ9 . (4.2)

It coincides with the expression written explicitly in [25]. Further interesting obser-

vations on the other subleading terms in the asymptotic expansion of γABA

10 will be

discussed in appendix B.
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3. BFKL-like poles. An indirect indication of the correctness of the result emerges by

looking at its analytical continuation to complex values of the spin. In particular,

the structure of the expansion around M = −2 will be presented in section 6.

4. Dressing self-consistency. The dressing induced terms in γABA
10 are separately parity

invariant. The dressing factor starts to contribute at four loops. It was observed that

at this order terms of the anomalous dimensions of twist-two and -three operators

coming from the dressing factor are reciprocity respecting separately [18, 34, 36].

The analysis of P10 in the case of γABA
10 confirms this feature. The five-loop term

proportional to ζ3 is reciprocity respecting if combined with the corresponding four-

loop ζ3-term. The ζ5-term at five loops is reciprocity respecting separately (see

formula B.16). This seems to indicate a perturbative pattern for the reciprocity of

terms that are dressing-induced. Terms proportional to transcendental sums ζi, which

newly appear at a given loop order should automatically be reciprocity respecting.

Terms proportional to transcendental sums that are also present at lower-loop orders

are invariant under (3.2) when combined altogether.

5. Additional structural properties. All coefficients of the harmonic sums are integers,

likewise to the lower loop orders. Also, P10 turns out to be a combination of allowed

parity-even combinations of type Ω, a condition being stronger than the general par-

ity invariance.

5 The wrapping contribution

In this section we evaluate the leading wrapping correction to the asymptotic anomalous

dimension of twist-three operators.

The Lüscher type formula for multi-particle states was conjectured in [13] and success-

fully applied to the Konishi-operator in [13] as well as twist-two operators of general spin

in [17]. It consists of two parts. One describes the modification of the particle quantization

condition due to the finite volume (which will not contribute at leading order), while the

second comes from the propagation of virtual particles around the cylinder and is given by

∆E(L) = −
∞
∑

Q=1

∫ ∞

−∞

dq

2π
STra1

[

Sa2a
a1a(q, p1)Sa3a

a2a(q, p2) . . . Sa1a
aMa(q, pM )

]

e−ǫ̃a1
(q)L . (5.1)

This formula applies to a M -particle state of identical particles of type a, whose consecutive

self-scatterings preserve the state and determine their momenta pi via the ABA equations.

The matrix Sca
ba(q, p) describes how a virtual particle of type b with momentum q scatters

on a real particle of type a with momentum p. The exponential factor can be interpreted

as the propagator of the virtual particle.

For twist-three operators the momenta of the particles are determined by the ABA

equations in terms of the rapidities u by

u(p) =
1

2
cot

p

2

√

1 + 16g2 sin2 p

2
.
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At one-loop the rapidities are given by roots of the Baxter-Q function PM (u) in (2.8). As

this is an even polynomial of order M , we can repeat the derivation of [17], which leads to a

result similar to the twist-two case. However, we have to take into account two differences.

The first one is that the length is equal to L = 3, which renders the exponential part to be

of the form

e−ǫ̃Q(q)L =
4Lg2L

(q2 + Q2)L

L=3
=

64g6

(q2 + Q2)3
.

Additionally, the one-loop energy of twist-three operators differs from the the twist-two

one. It is given by
M
∑

k=1

16

1 + 4u2
k

= 8S1

(M

2

)

.

In the end, we can write the wrapping correction in a very elegant way as

∆γ = −64g10 S1

(M

2

)2
∞
∑

Q=1

∫ ∞

−∞

dq

2π

TM (q,Q)2

RM (q,Q)

64

(q2 + Q2)3
, (5.2)

where RM and TM are functions given by the same expressions that are valid in the case

of twist-two operators

RM (q,Q) = PM

(

1

2
(q − i(Q − 1))

)

PM

(

1

2
(q + i(Q − 1))

)

×PM

(

1

2
(q + i(Q + 1))

)

PM

(

1

2
(q − i(Q + 1))

)

,

TM (q,Q) =

Q−1
∑

j=0

[

1

2j − iq − Q
−

1

2(j + 1) − iq − Q

]

PM

(

1

2
(q − i(Q − 1)) + ij

)

.

In order to obtain the wrapping contribution we calculated (5.2) for all even values

of M up to M = 40. Assuming the maximal transcendentality principle, we expect the

wrapping correction to have the following structure

γwrapping(M) = S1

(

M

2

)2

(C0(M)ζ7 + C2(M)ζ5 + C4(M)ζ3 + C7(M)) , (5.3)

where the coefficients Cn(M) have a degree of transcendentality n. We used the fact that

S2
1 is factored out in the Lüscher formula (5.2). Likewise to the case of the asymptotic

Bethe Ansatz we are looking for coefficients that are linear combination of harmonic sums

with positive indices. For a given degree of transcendentality n, there are 2n−1 independent

sums. Thus, in order to obtain C0, C2 and C4 it is sufficient to know γwrapping(M) to values

of M = 2, M = 4 and M = 16, respectively, such that they can be determined from the

results we computed. However, to unequivocally fix C7 it is necessary to know γwrapping(M)

to values of the spin M = 128 which is far from our reach. Nevertheless, we can assume, as

a natural refinement of the maximal transcendentality principle, that the coefficients of the
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harmonic sums entering C7 are integers. With this assumptions a result is easily found.4

The final result with all harmonic sums being of argument M/2 is given by

γwrapping(M) = −64 g10 S2
1

(

35ζ7 − 40S2ζ5 + (−8S4 + 16S2,2)ζ3

+2S7 − 4S2,5 − 2S3,4 − 4S4,3 − 2S6,1 + 8S2,2,3 + 4S3,3,1

)

. (5.4)

For fixed values of M this result matches exactly numerical evaluations of the proposed

Y -system [22].

Wrapping corrections, by their nature, should not modify the leading asymptotic be-

havior (4.1). The result (5.4) confirms this expectation, since the factor S2
1 ∼ log2 M

multiplies a linear combination of harmonic sums, which have a leading asymptotic behav-

ior ∼ 1/M2. The first wrapping contribution to the asymptotic behavior therefore only

enters at order (log2 M/M2) (see appendix B, formula (B.6)),

γwrapping(M) ∼ −

(

768ζ3 −
16π4

15

)

log2 M

M2
, for M → ∞ . (5.5)

Thus, for large values of the spin wrapping corrections are of the same order as in the case

of twist-two operators [18]. Further similarities with the asymptotic expansion of twist-two

operators are discussed in appendix B.

In the previous section we stated that the asymptotic part given in table 1 is reciprocity

invariant. Hence, for the complete anomalous dimension to be reciprocity invariant, (5.4)

has to satisfy this property separately. Writing (5.4) in terms of Ω and Ω

γwrapping(M) = −64 g10 Ω2
1

(

35 ζ7 + 4 Ω3,3,1 + 8 Ω2,2,3 + 24 ζ3 Ω2,2 − Ω7

)

, (5.6)

one checks that this is indeed true, since according to the theorem in section 3.1 the

appearing structures are all parity-invariant.

We conclude this section giving the prediction that our conjecture given in table 1

and (5.4), together with the formulas in (2.9)–(2.12), give for the five-loop anomalous

dimension of the simplest twist-three operator with even spin (M = 2)

γ(2)=8g2−24g4+136g6−(920+128ζ3)g8+8(833+144ζ3+480ζ5−280ζ7)g10+O(g12) (5.7)

6 Analytic continuation

As already mentioned, no direct checks of the consistency of the multi-loop anomalous

dimension (2.7) from its pole structure are possible.

However, it is worth to analyze the behavior of the anomalous dimension to four-

loops (2.9)–(2.12) and the five-loop part given in table 1 and (5.4) at the singularity nearest

4As is usual in such kind of conjectures, there is a powerful numerical test that can be applied to any

guesswork. Typically, one is able to compute spin dependent expressions like C7(M) up to a reasonable

maximum value of M in exact (rational) form. On the other hand, numerical values can be obtained with a

very high number of digits for quite larger values of M . Thus, given a conjectured expression obtained from

data up to Mmax one can always test it beyond that limit with a precision of several hundreds of digits.

These kinds of tests are always passed by the expressions we derive in this paper.
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to the origin, M = −2. Thus, we need the small ω expansion of general nested harmonic

sums of the form

Sa1,...,ad
(−1 + ω), ai ∈ N. (6.1)

The analytic continuation we need can be obtained by observing that from the definition

of harmonic sums it follows that

Sa,b(−1 + ω) = Sa,b(ω) −
1

ωa
Sb(ω). (6.2)

This simple identity allows us to proceed by trivially expanding the r.h.s around ω = 0.

This is a straightforward task, once one makes use of the general formula for the derivatives

of nested harmonic sums [18], and takes into account that Sa(0) = 0.

The expansion of the n-th loop anomalous dimension γn has the general NNLO form

γn = an ω1−2 n + bn ζ2 ω3−2 n + cn ζ3 ω4−2 n + · · · , an, bn, cn ∈ Q. (6.3)

Up to four loops, the explicit formulas for the two highest terms (NLO) of the analytic

continuation are given in [11].5 We recall them here for convenience, also adding the NNLO

contribution

γ2 = −
8

ω
+ 8 ζ2ω − 8 ζ3ω

2 + · · · , γ4 = −
8

ω3
+

16 ζ2

ω
+ 16 ζ3 + · · · , (6.4)

γ6 = −
8

ω5
+

48 ζ2

ω3
+

48 ζ3

ω2
+ · · · , γ8 = −

8

ω7
+

80 ζ2

ω5
+

80 ζ3

ω4
+ · · · . (6.5)

In [11], an all-loop resummation at NLO was proposed6 and conjectured to be valid for the

asymptotic γABA part.

At five loops, we have found for the contributions of the γABA and γwrapping parts,

respectively, the expressions

γABA

10 = −
136

ω9
+

496ζ2

ω7
−

784ζ3

ω6
+ · · · , γwrapping

10 =
128

ω9
−

384ζ2

ω7
−

128ζ3

ω6
+ · · · . (6.6)

The analytical continuation of the complete five-loop anomalous dimension is thus given by

γ10 = −
8

ω9
+

112ζ2

ω7
−

912ζ3

ω6
+ · · · . (6.7)

Interestingly enough, only the above formula for the complete anomalous dimension

matches the proposed resummation exactly. The latter can therefore be rewritten as

γNLO = −8
g2

ω

(

1

1 − t
− ζ2

1 + 3 t2

(1 − t)2
ω2

)

, t =
g2

ω2
, , (6.8)

with the equality valid in a perturbative sense. It is obviously tempting to extend such a

conjecture to NNLO, trying to resum the poles that appear in (6.3) with ζ3 as a coefficient.

However, the five data-points available (one for each loop) hardly allow for a genuine

resummation. In fact, the NNLO term in the above expression is likely to contain enough

5See eq. (5.12) there.
6See eq. (5.14) there.
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more terms to be at least in a one-to-one correspondence with the available constraints.

Nevertheless, we find intriguing that the following simple parameterization can be given,

valid at five loops,

γNNLO = −8
g2

ω

(

1

1 − t
− ζ2

1 + 3 t2

(1 − t)2
ω2 + ζ3

1 − 5 t + 3 t2 + t3 + 128 t4

(1 − t)3
ω3

)

. (6.9)
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A Harmonic sums

In this appendix we recall some useful formulas for harmonic sums with positive indices.

The generalization to the case of arbitrary sign for the indices is treated in many references,

for example [42] (see also appendix A of [18]).

The basic definition of nested harmonic sums Sa1,...,an is recursive

Sa(N) =

N
∑

n=1

1

na
, Sa,b(N) =

N
∑

n=1

1

na
Sb(n), (A.1)

Given a particular sum Sa = Sa1,...,an we define

depth (Sa) = n, (A.2)

transcendentality(Sa) = a ≡ a1 + · · · + an. (A.3)

For a product of S sums, we define transcendentality to be the sum of the transcendental-

ities of the factors.

Complementary harmonic sums are defined recursively by

Sa = Sa, (A.4)

Sa = Sa −
ℓ−1
∑

k=1

Sa1,...,ak
Sak+1,...,aℓ

(∞), (A.5)

This definition is valid when the rightmost index of a is not 1. Otherwise, the above

recursive definition leads to a polynomial in the formal quantity S1(∞). In this case our

definition of Sa prescribes to set S1(∞) → 0 in the end.
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B Analysis of the asymptotic structure of γ and P

Here we analyze the first few orders of the large M expansion of the twist-three anomalous

dimension up to five-loops and its corresponding kernel P .7

The expansions of (2.9)–(2.12) to O(1/m−3) are given by

γ2 = 8 log m̄ +
4

m
−

2

3 m2
+ O

(

1

m4

)

, (B.1)

γ4 = −
8

3
π2 log m̄ − 8ζ3 +

1

m

[

16 log m̄ −
4π2

3

]

−
1

m2

[

8 log m̄ −
2π2

9
− 12

]

+
1

m3

[

8

3
log m̄ −

28

3

]

+ O

(

1

m4

)

, (B.2)

γ6 =
88

45
π4 log m̄ − 8ζ5 +

8

3
π2ζ3 −

1

m

[

32

3
π2 log m̄ + 16ζ3 −

44π4

45

]

−
1

m2

[

16 log2 m̄ −

(

32 +
16π2

3

)

log m̄ − 8 +
20π2

3
+

22π4

135
− 8ζ3

]

+
1

m3

[

16 log2 m̄ −

(

64 +
16π2

9

)

log m̄ + 16 +
44π2

9
−

8ζ3

3

]

+ O

(

1

m4

)

, (B.3)

γ8 = −

(

584π6

315
+64ζ2

3

)

log m̄−
32

15
π4ζ3+

8

3
π2ζ5+440ζ7+

1

m

[

48π4

5
log m̄−

292π6

315
+

32

3
π2ζ3

−32ζ2
3−16ζ5

]

+
1

m2

[

16π2 log2 m̄−

(

64+32π2+
24π4

5
−64ζ3

)

log m̄−128−
8π2

3

+
88π4

15
+

146π6

945
−32ζ3−

16

3
π2ζ3+

16ζ2
3

3
+8ζ5

]

+
1

m3

[

64

3
log3 m̄−(96+16π2) log2 m̄

+

(

96+
176π2

3
+

8π4

5
−64ζ3

)

log m̄+112−
56π2

3
−

64π4

15
+80ζ3+

16

9
π2ζ3−

8ζ5

3

]

+O

(

1

m4

)

, (B.4)

where m = M
2 and m̄ = m exp γE .

At five loops, the large M expansion of table 1 and (5.4) leads to

γABA

10 =

(

28384π8

14175
+

128

3
π2ζ2

3 +1280ζ3ζ5

)

log m̄+
2048

945
π6ζ3+64ζ3

3 +
8

45
π4ζ5−

440

3
π2ζ7

−7448ζ9−
1

m

[(

9472π6

945
+256ζ2

3

)

log m̄−
14192π8

14175
+

448

45
π4ζ3−

64

3
π2ζ2

3−
32

3
π2ζ5

−640ζ3ζ5 − 880ζ7

]

+
1

m2

[(

256 −
272π4

15
− 128ζ3

)

log2 m̄ +

(

1280 +
128π2

3

+
496π4

15
+

4736π6

945
−128ζ3−

160

3
π2ζ3+128ζ2

3−288ζ5

)

log m̄+1920+
128π2

3

7In the case of higher twist L > 2, anomalous dimensions occupy a band [43]. In this paper we have

considered the minimal anomalous dimension, see [44] for an asymptotic study of the full spectrum up to

three loops.
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+
64π4

45
−

128π6

21
−

7096π8

42525
+64ζ3+32π2ζ3+

224

45
π4ζ3−208ζ2

3−
32

9
π2ζ2

3−32ζ5

−
16

3
π2ζ5 −

320

3
ζ3ζ5 − 440ζ7

]

−
1

m3

[

256π2

9
log3 m̄ −

(

128π2

+
272π4

15
−64ζ3

)

log2 m̄+

(

768+
320π2

3
+

2752π4

45
+

4736π6

2835
−320ζ3−

160

3
π2ζ3

+
128ζ2

3

3
− 288ζ5

)

log m̄ + 1536 + 32π2 −
904π4

45
−

1792π6

405
+ 160ζ3

+
208

3
π2ζ3 +

224

135
π4ζ3 −

496ζ2
3

3
+ 96ζ5 −

16

9
π2ζ5 −

440ζ7

3

]

+ O

(

1

m4

)

, (B.5)

γwrapping = −

(

768ζ3−
16π4

15

)

log2 m̄

m2
+

(

768ζ3−
16π4

15

)

(log2 m̄−log m̄)
1

m3
+O

(

1

m4

)

(B.6)

As expected in the case of minimal anomalous dimension for operators of twist L ≤ 3,

logarithmic enhancements in the asymptotic expansions of γ are always positive in power.8

Notice that, when expressed in terms of the variable M = 2m, the maximal logarithmic

terms logp m/mp in the expansions up to four loops, formulas (B.1)–(B.4), are compatible

with a resummation of type

γ(M) = f(g) log
(

M + 1
2f(g) log M + . . .

)

+ . . . . (B.7)

According to this, their coefficients are simply proportional to fm+1

γ(M) ∼ f log M +
f2

2

log M

M
−

f3

8

log2 M

M2
+ · · · (B.8)

where f is the universal scaling function, whose weak coupling expansion to five-loop order

can be found in [7]. At five loops, the pattern (B.8) is broken by the term log2 M/M2 in the

expansion (B.5) above.9 Interestingly, it is precisely at this order in the large M expansion

that wrapping corrections start to contribute. Explicitly, while on the basis of (B.8) one

would expect at five loops a term of type

(c22)5
log2 M

M2
with (c22)naive

5 =
(

− f3

8

)

5
= −1024

15 π4 = −6144 ζ4 , (B.9)

reexpressing (B.5) and (B.6) in terms of M one finds

(c22)ABA
5 = 1024− 512ζ3 − 6528ζ4 and (c22)wrapping

5 = −3072 ζ3 + 384 ζ4 . (B.10)

8Terms with negative powers of the logarithm appear for twist L ≤ 3, but for non-minimal anomalous

dimensions [45]. For twist L > 3 terms ∼ 1
logp M

are present both for large L and M [46] and for finite

twist, see a similar discussion in [47] and reference therein. For a general method to derive higher order

terms in the 1/M expansion at fixed L see [48].
9Further maximal logarithmic terms as log3 M/M3, log4 M/M4 continue to obey the rule as dictated by

further orders in (B.8). Coefficients of terms logp M/Mp with p > 4 are absent in the expansion, as checked

up to 1/M25. This is again consistent with (B.8), being such coefficients of the form f6

160
,− f7

384
, . . . , they

would contribute starting at 6 loops.
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The sum of these terms does clearly not reproduce (B.9). This is analogous to the case of

twist two operators [18].10

It is interesting to notice that the structure, lost at higher orders in 1/m, of the

first terms in the expansion for γwrapping is also present in its twist-two analogue. The

appearance of an overall coefficient multiplying the 1/m2 and 1/m3 terms was already

noticed in formula (C.5) of [18]. Another analogy between the leading asymptotic behavior

of twist-2 and twist-3 wrapping contributions is their negative sign and their common

pattern ∼ cn ζn + cn+1 ζn+1, where n coincides with the twist.

Concerning the P -kernel, the logarithmic structure to four loops is remarkably simpler

than the one of the corresponding anomalous dimension, as it is only linear in log M [36]. In

particular, there are no maximally enhanced terms of the form (log M/M)k. As discussed

in [32, 33], this feature of P translates into the chance of a resummation of type (B.7).

This asymptotic structure changes at five loops.

The P function, derived by inverting formula (3.1), reads in terms of m = M
2 (∂ ≡ ∂m)

to five-loops

P(m) =

∞
∑

k=1

1

k!

(

−1
4∂
)k−1

[γ(m)]k = γ−
1

8
(γ2)′+

1

96
(γ3)′′−

1

1536
(γ4)′′′+

1

30720
(γ5)′′′′+· · · .

Replacing γ by the perturbative expansion (2.7) we can formally write at five loops

P10 = γ10 −
1

4
(γ4γ6 + γ2γ8)′ +

1

32
(γ2γ

2
4 + γ2

2γ6)′′ −
1

384
(γ3

2γ4)′′′ +
1

30720
(γ5

2)′′′′ .(B.11)

Expanded at large M , including the wrapping contribution, this becomes

P10 =

(

28384π8

14175
+

128

3
π2ζ2

3 + 1280ζ3ζ5

)

log m̄ +
2048

945
π6ζ3 + 64ζ3

3 +
8

45
π4ζ5 −

440

3
π2ζ7

−7448ζ9 +
1

m

[

14192π8

14175
+

64

3
π2ζ2

3 + 640ζ3ζ5

]

+
1

m2

[(

256 − 896ζ3

)

log2 m̄ +

+

(

1280+
128π2

3
−

16π4

15
−128ζ3−

64

3
π2ζ3−320ζ5

)

log m̄+1920+
128π2

3
+

64π4

45
+

−
1024π6

945
−

7096π8

42525
+ 64ζ3 − 64ζ2

3 −
32

9
π2ζ2

3 −
320

3
ζ3ζ5

]

−
1

m3

[

(256−896ζ3) log2 m̄+

(

1024+
128π2

3
−

16π4

15
+768ζ3−

64

3
π2ζ3−320ζ5

)

log m̄

+1280+
64π2

3
+

88π4

45
−

1024π6

945
+128ζ3+

32

3
π2ζ3−64ζ2

3 +160ζ5

]

+O

(

1

m4

)

. (B.12)

The “simplicity” feature is lost, because at order 1/m2 a term log2 m/m2 appears, which

is responsible for the above formula (B.10).

We recall that the consequences (B.7) and (B.8) of the simplicity of the P function and

the knowledge of f to presumably all loops [7] allow in principle an all-loop prediction for

10One difference is however that the degree of transcendentality of the asymptotic and wrapping contri-

butions, that differs in (B.10), is the same in the twist-two case.
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such maximal logarithmic terms, whose coefficients should be simply proportional to fm+1.

Indeed, such inheritance has been checked at strong coupling in [47] up to one-loop in the

semiclassical sigma model expansion, as well as in [49] at the classical level. An independent

strong coupling confirmation of (B.7) for twist-two operators has recently been given in [24].

To clarify if and how the difference in the simplicity of the P at weak and strong coupling

works, further orders in the semiclassical sigma model expansion would be needed.

We conclude the appendix by reporting the separate contributions to P10 coming from

the dressing factor, which obey the property described in point 4 of section 4. They read

P
(ζ3)
10 ≡ γ

(ζ3)
10 −

1

4
(γ2γ

(ζ3)
8 )′ =896S6−2304S1,5−1792S2,4−768S3,3−1792S4,2−2304S5,1

+2560S1,1,4+512S1,2,3+1536S1,3,2+3584S1,4,1+512S2,1,3+1536S2,3,1+512S3,1,2

+512S3,2,1 + 2560S4,1,1 − 2048S1,1,3,1 − 2048S1,3,1,1 + 512ζ2S1S3 − 512S1S2S3

+768ζ4S
2
1 − 768S2

1S4 , (B.13)

P
(ζ5)
10 ≡ γ

(ζ5)
10 = 1280 S1 S3 . (B.14)

In the first line we included the dressing-induced contribution at four loops, which is

proportional to ζ3. These contributions can be expressed in terms of parity invariant

combinations (see Theorem (c) in section 3.1) as

P
(ζ3)
10 = 256(8 Ω1 Ω1,1,3 − 4Ω2

1 Ω1,3 + Ω3,3 + S1 Ω5 + 2ζ2Ω1 Ω3 + 3ζ4 Ω2
1) , (B.15)

P
(ζ5)
10 = 1280 Ω1 Ω3. (B.16)

References

[1] J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills,

JHEP 03 (2003) 013 [hep-th/0212208] [SPIRES];

I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS5 × S5 superstring,

Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [SPIRES];

N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super

Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].

[2] N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and

strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [SPIRES].

[3] M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054

[hep-th/0412188] [SPIRES].

[4] N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945

[hep-th/0511082] [SPIRES].

[5] R.A. Janik, The AdS5 × S5 superstring worldsheet S-matrix and crossing symmetry,

Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [SPIRES].

[6] N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS5 × S5 strings,

JHEP 11 (2006) 070 [hep-th/0609044] [SPIRES].

[7] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing,

J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].

http://dx.doi.org/10.1088/1126-6708/2003/03/013
http://arxiv.org/abs/hep-th/0212208
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0212208
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://arxiv.org/abs/hep-th/0305116
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0305116
http://dx.doi.org/10.1016/S0550-3213(03)00406-1
http://arxiv.org/abs/hep-th/0303060
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0303060
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.038
http://arxiv.org/abs/hep-th/0504190
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0504190
http://dx.doi.org/10.1088/1126-6708/2005/05/054
http://arxiv.org/abs/hep-th/0412188
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412188
http://arxiv.org/abs/hep-th/0511082
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0511082
http://dx.doi.org/10.1103/PhysRevD.73.086006
http://arxiv.org/abs/hep-th/0603038
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0603038
http://dx.doi.org/10.1088/1126-6708/2006/11/070
http://arxiv.org/abs/hep-th/0609044
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0609044
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610251


J
H
E
P
0
3
(
2
0
0
9
)
1
2
9

[8] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar

amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory,

Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [SPIRES];

F. Cachazo, M. Spradlin and A. Volovich, Four-loop cusp anomalous dimension from

obstructions, Phys. Rev. D 75 (2007) 105011 [hep-th/0612309] [SPIRES].

[9] A. Rej, M. Staudacher and S. Zieme, Nesting and dressing, J. Stat. Mech. (2007) P08006

[hep-th/0702151] [SPIRES];

K. Sakai and Y. Satoh, Origin of dressing phase in N = 4 super Yang-Mills,

Phys. Lett. B 661 (2008) 216 [hep-th/0703177] [SPIRES];

R.A. Janik and T. Lukowski, From nesting to dressing, Phys. Rev. D 78 (2008) 066018

[arXiv:0804.4295] [SPIRES].

[10] J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of

corrections to the spin-chain/string duality, Nucl. Phys. B 736 (2006) 288 [hep-th/0510171]

[SPIRES].

[11] A.V. Kotikov, L.N. Lipatov, A. Rej, M. Staudacher and V.N. Velizhanin, Dressing and

wrapping, J. Stat. Mech. (2007) P10003 [arXiv:0704.3586] [SPIRES].

[12] F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, Wrapping at four loops in N = 4

SYM, Phys. Lett. B 666 (2008) 100 [arXiv:0712.3522] [SPIRES].

[13] Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects

for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [SPIRES].

[14] V.N. Velizhanin, The four-loop Konishi in N = 4 SYM, arXiv:0808.3832 [SPIRES].
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